

March 6, 2019

Power Procurement Board Retreat

Agenda

- Energy Market Overview
- Energy Risk Management
- Resource Adequacy
- Renewable Energy Products
- Long-Term Renewable Planning

Energy Market Overview

Power Industry

WECC

- Western Interconnection
 - Multiple BAAs
- Balancing Authority Area
 - Maintain Supply/Demand Balance
 - Demand = Supply + Imported Energy
 - Manage Inter-Tie Tagging
 - Manage System Frequency
 - Manage Coordinated Dispatch of Generation

California Balancing Authority Areas

- CAISO BAA
 - Avg. Peak Load 45,000 MW
 - 26,000 circuit miles of transmission
- Role of CAISO
 - Competitive Wholesale
 Power Market
 - Reliable Operations
 - Grid Planning and Development

Wholesale Energy Market Products

- Energy
- Transmission
- Capacity
 - Resource Adequacy
 - Ancillary Services
 - Operating Reserves
 - Regulation Services
- Natural Gas
- Congestion Revenue Rights
- Renewable Energy Products

Energy

- Transacting Energy
 - Bilateral Wholesale Markets
 - Long / Short Term
 - CAISO Day-Ahead Market
 - CAISO Real-Time Market
 - Fifteen Min. Market (FMM)
 - Five Min. Market (RTM)
- Physical / Financial Transactions
- Inter-SC Transactions

Energy Market Price Volatility

- Key Drivers of Energy Market Prices
 - Natural Gas
 - Storage
 - Transport
 - Demand
 - Weather
 - Local and Regional
 - Hydrology
 - Policy and Changing Supply Composition
 - RPS
 - GHG Free Objectives

15,755 MW = Maximum import capacity at summer peak for the ISO

Daily Natural Gas Spot Prices (PG&E Citygate)

Natural Gas Storage Levels - Pacific

Temperature Forecast

Hydrology Forecast

California Snow Water Content, February 19, 2019, Percent of April 1 Average

Statewide Percent of April 1: 116%

Statewide Percent of Average for Date: 146%

Changing Grid

Installed renewable resources (as of 1/08/2019)

	Megawatts
🔆 Solar	11,868
⇒ Wind	6,505
≋ Small hydro	1,237
₩ Geothermal	1,785
♠ Biofuels	953
Storage battery	136*
TOTAL	22,484

Integration of Renewables

Impact of Solar / Wind on Energy Prices

CAISO Markets

- Day-Ahead Market
 - Matching Supply / Demand
 - Majority of Transitions
 - Market Processes
 - MPM, IFM, RUC and ELS
- Real-Time Market
 - Matching Supply / Demand
 - Incremental Adjustments to DAM
 - Hourly, 15-Min. and 5 Min.
 - Market Processes
 - MPM, HASP, STUC, RTUC and RTED

18

CAISO Nodal Pricing

- Locational Market Prices (LMP)
 - Full Network Model
 - Injections and Withdrawal
 - Prices Calculated at each Node
 - Load
 - Generation
 - Inter-Tie
 - Price Granularity
 - Hourly, 15-Min. and 5-Min.
 - Based on Cost of Serving 1 MW of Incremental Load

CAISO Nodal Pricing Settlement

- Load and Supply Nodal Settlement
 - Load Settlement at DLAP
 - Default Load Aggregation Point
 - EBCE in PG&E DLAP
 - Generation Settlement
 - Individual PNOD
 - Pricing at location of generation
 - Inter-SC Trades
 - Trading Hub Settlement
 - NP15 EZ GEN HUB
 - Weighted average of generation PNODs

Energy Risk Management

Energy Risk Management

- Risk Management Objectives
 - Mitigate Exposure to Volatility
 - Durable Rates
 - Financial Stability
 - Regulatory Compliance
- Key Energy Market Risks
 - Volumetric Risk
 - Fluctuations in the volume of supply and demand
 - Price Risk
 - Price volatility

Long Term to Short Term Hedge Strategy

- Long Term Hedging
 - Load Forecasting
 - Coverage Objectives
 - Market Conditions
 - Resource Composition
- Short Term Hedging
 - Refined Load Forecast
 - Intra-Month / Intra-Day Shaping
 - Market Conditions
- Fixed Price Energy Hedging
 - Inter-SC Trades

				Price Matrix Percentile				
Months to Delivery		>60%	60%	50%	40%	25%	10%	<10%
Covered Position as a % of Forecasted Load								
0+	3	80%	80%	85%	85%	90%	90%	100%
3+	6	70%	70%	75%	80%	80%	90%	100%
6+	9	70%	70%	75%	80%	80%	80%	90%
9+	12	60%	60%	70%	80%	80%	80%	90%
12+		60%	60%	70%	80%	80%	80%	90%

Load / Resource Balance

Example of Hedging Tools

- Inter-SC Trade of Energy
 - Tool used to fix the costs of energy supply
 - All Hours (7 X 24)
 - On-Peak Delivery (HE 07 to HE 22)
 - Off-Peak Delivery (HE 01 to HE 06 & HE23/24)
 - Traded at EZ GEN HUB of PNOD
 - NP15 or associated with Physical Resource
- Imports / Exports
- Options
- Generation Resource

Forward Energy Curve

NP15 On-Peak Forward Power - EOX

- Base Load vs. Shaped Energy
 - Mix of products purchases to match load profile
 - Establish Coverage within Risk Tolerance

- MWh Coverage and Value-at-Risk Hedging
 - Match Demand with Fixed Price Supply
 - Reduces exposure to market price volatility
 - Form of Insurance
 - May include premium cost similar to insurance
 - Establish Coverage within Risk Tolerance
 - Maintain open position based on value-at-risk
 - Value-at-risk is a measure of risk of loss.

Resource Adequacy

Resource Adequacy Requirements

- Resource Adequacy Program
 - Developed to ensure CAISO has access to sufficient generating capability to support grid reliability
 - Create an additional revenue stream to maintain existing capacity, and incent development of new capacity
- CAISO market is based on an energy-only design
 - Cost of energy based on variable cost of operation
 - May not produce sufficient energy rents to support cost of capacity
 - Ensure specific capacity remains available for managing grid operations

Key Concepts

- Resource Adequacy Requirements
 - Load Serving Entities (LSE) must demonstrate they have purchased a defined amount of capacity
- System Resource Adequacy
 - 115% of LSE monthly peak-demand
 - Supplied from qualified resources
 - Net Qualified Capacity
- Local Resource Adequacy
 - Capacity located in specific geographic locations
 - Sub-requirement (% of overall capacity must be local)
- Flexible Resource Adequacy
 - Capacity with defined operational characteristics
 - Sub-requirement (% of overall capacity with ramping)

System Resource Adequacy

- Resources interconnected in CAISO BAA
 - Generator Net Qualifying Capacity (NQC)
 - Max Capacity less station service (or ambient derate)
 - Average production capability of defined time (wind / solar)
- Imports
 - Firm energy imported into the CAISO
 - Must be bundled with Import Capability
 - To ensure sufficient BAA capacity, imports limited
 - CAISO defines a fixed amount of import capability
- Other
 - Limited Demand Response

2018 ISO SUMMER ON-PEAK NQC BY FUEL TYPE

Local Resource Adequacy

- Capacity Located in a defined Sub-
 - **Pocket**
 - PG&E System
 - SCE System
 - SDG&E System
- Resources Defined by Effectiveness Factors
 - Modeling based on contingency analysis
 - Designed to maintain load under N-1-1 contingency
- Requirements Defined Annually
 - CAISO technical study
 - Impacted by resource retirements

Humboldt Area Sierra Stockton Area North Coast /Bay Area Kern Area Greater Big Creek Bay Area Ventura Valley Electric Los Angeles San Diego

Figure 2: LCR Areas within the ISO

Local Resource Adequacy

Local Area	2018 August NQC (MW)	2017 Local Req. * (MW)	2018 Local Req.* (MW)		
Greater Bay Area	7,070	4,539	3,810		
Other PG&E Areas**	7,529				
Fresno	3,224				
Humboldt	202				
Kern	460	4,766	4,942		
North Coast / North Bay	865				
Sierra	2,147				
Stockton	631				
TOTAL NP 26	14,599	9,305	8,752		
Big Creek-Ventura	5,521	1,534	1,778		
LA Basin	10,283	6,595	6,693		
San Diego / Imperial Valley	5,356***	3,569	3,833		
TOTAL SP 26	21,160	11,698	12,304		
TOTAL LOCAL	35,759	21,003	21,056		

^{*}Requirements for August 2017 are based on the month ahead RA process and reflect the 2017 local true-up. Requirements for August 2018 are based upon the year ahead RA process and do not reflect the local true-up, which will occur in April 2018.

^{**}Local reliability areas outside the Bay Area but within the PG&E TAC area are grouped as "Other PG&E Areas" for local RA compliance.

Flexible Resource Adequacy

- Resource with Flexible Operating Characteristics
 - Ramping Capability
- Types of Flexible Capacity
 - Category 1
 - Category 2
 - Category 3
- Need driven by operational variability

Resource Adequacy Challenges

- Compliance Requirement
- Limited Supply
 - Resource retirements
 - Changing grid composition
- Limited Suppliers
 - Key suppliers maintain material share of supply
- Lumpiness of Supply
 - Resource operating limitations
- Cost Increasing Dramatically

Renewable Energy Products

Renewable Energy Certificates (RECs)

- Energy produced by a CA RPS-eligible renewable energy resource
- Renewable Energy production tracked with RECs
 - REC created and transferred in WREGIS
- RPS Portfolio Content Categories
 - Category 1 REC
 - Energy and REC delivered to California BAA without substitution
 - Category 2 REC
 - Energy and REC that cannot be delivered to a CBA without substituting energy from another source
 - Category 3 REC
 - RECs that have been "unbundled" from energy delivery

Carbon Free and Low-Carbon Energy

- Carbon Free Energy
 - Certain Types of CA RPS-Eligible Resources
 - Wind
 - Solar
 - Large Hydro Resources
 - Greater than 30 MW Name Plate Capacity
 - Not RPS-Eligible, but carbon free
 - Carbon Free Imports
- Asset-Controlling Supplier (ACS)
 - Aggregation of resources with a registered emissions factor, majority large hydro
 - Generally associated with power that is imported into the CAISO

Purchasing Renewable Energy

- Purchasing Attributes
 - Category 1, 2 and 3 RECs
 - 1 REC = 1 MWh of Renewable Production
 - Mitigate exposure to value of energy
 - Index + REC Value

- Renewable Energy delivered from portfolio of resources
- Defined delivery volume and shape
- As Delivered / Resource Contingent
 - Based on output of a specific generator

CA-RPS REC Prices

Long-Term Renewable Planning

Long-Term Renewable Development

- Resource Development
 - Interconnection
 - Value of Energy
 - Operational Flexibility / Shaping
 - Capacity Factor
 - Solar and Wind Average: 30%
 - Integration of Storage
 - Distributed Energy Resources
- Diversified Portfolio

Renewable Energy & Storage Mandates

- California Renewables Portfolio Standard (RPS)
 - 60% RPS by 2030
 - 100% GHG-free by 2045

RENEWABLE ENERGY GROWTH IN CALIFORNIA

California receives 32 percent of its electricity from solar, wind and other renewable sources. A new law signed Monday by Gov. Jerry Brown requires an increase to 100 percent by 2045.

*"Non-carbon" sources like nuclear and large dams also can provide up to 40 percent.

Source: California Energy Commission BAYAREA NEWS GROUP

- Energy Storage Procurement Requirements
 - Statewide target: 1,325 MW
 - CCA targets: 1% of annual 2020 peak load

RPS Energy as % of Retail Sales

State RPS Procurement % Requirements

*Beginning in 2021, 65% of RPS requirements must be procured from contracts ≥ 10 years

Integrated Resource Planning

- EBCE current: 5% above current RPS-level
- 2018 IRP: maintain 5% above RPS through 2025 while meeting RPS with 85% long term contracts

What is our Path to 100% Clean Energy?

- Current law requires by 2045, but EBCE wants to get there much faster. So the question is how we get there.
- EBCE staff recommends focusing 2020 IRP on EBCE's Pathways to 100% Clean Energy

Integrated Resource Planning: 2020 Update

- Focus on developing EBCE's Pathways to 100% Clean Energy
- Include short, medium and long-term renewable and clean energy targets for EBCE
- Integrate Local Development Business Plan activities into EBCE's 100% Clean Energy IRP, including:
 - Energy efficiency, demand response, electrification, local renewables and zero-emission capacity

Integrated Resource Planning : Local stakeholder Engagement

- Kick-off 2020 IRP Update in Q2 2019
- Hold multiple rounds of public meetings across
 Alameda County in Q3 and Q4 2019
- Present draft 2020 IRP to Board of Directors
 Q4 '19 or Q1 '20
- Submit 2020 IRP to CPUC Q3 2020

Next Steps

- Identify additional deep-dive topics for future review
- May 8 (tentative) 6:00-8:00PM
 - Road to 100% Renewables

Questions / Comments

